Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Motion Vector Extrapolation for Video Object Detection (2104.08918v2)

Published 18 Apr 2021 in cs.CV

Abstract: Despite the continued successes of computationally efficient deep neural network architectures for video object detection, performance continually arrives at the great trilemma of speed versus accuracy versus computational resources (pick two). Current attempts to exploit temporal information in video data to overcome this trilemma are bottlenecked by the state-of-the-art in object detection models. We present, a technique which performs video object detection through the use of off-the-shelf object detectors alongside existing optical flow based motion estimation techniques in parallel. Through a set of experiments on the benchmark MOT20 dataset, we demonstrate that our approach significantly reduces the baseline latency of any given object detector without sacrificing any accuracy. Further latency reduction, up to 25x lower than the original latency, can be achieved with minimal accuracy loss. MOVEX enables low latency video object detection on common CPU based systems, thus allowing for high performance video object detection beyond the domain of GPU computing. The code is available at https://github.com/juliantrue/movex.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Github Logo Streamline Icon: https://streamlinehq.com