Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

DW-GAN: A Discrete Wavelet Transform GAN for NonHomogeneous Dehazing (2104.08911v2)

Published 18 Apr 2021 in eess.IV

Abstract: Hazy images are often subject to color distortion, blurring, and other visible quality degradation. Some existing CNN-based methods have great performance on removing homogeneous haze, but they are not robust in non-homogeneous case. The reasons are mainly in two folds. Firstly, due to the complicated haze distribution, texture details are easy to be lost during the dehazing process. Secondly, since the training pairs are hard to be collected, training on limited data can easily lead to over-fitting problem. To tackle these two issues, we introduce a novel dehazing network using 2D discrete wavelet transform, namely DW-GAN. Specifically, we propose a two-branch network to deal with the aforementioned problems. By utilizing wavelet transform in DWT branch, our proposed method can retain more high-frequency knowledge in feature maps. In order to prevent over-fitting, ImageNet pre-trained Res2Net is adopted in the knowledge adaptation branch. Owing to the robust feature representations of ImageNet pre-training, the generalization ability of our network is improved dramatically. Finally, a patch-based discriminator is used to reduce artifacts of the restored images. Extensive experimental results demonstrate that the proposed method outperforms the state-of-the-arts quantitatively and qualitatively.

Citations (86)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.