Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Emotion-Regularized Conditional Variational Autoencoder for Emotional Response Generation (2104.08857v1)

Published 18 Apr 2021 in cs.CL

Abstract: This paper presents an emotion-regularized conditional variational autoencoder (Emo-CVAE) model for generating emotional conversation responses. In conventional CVAE-based emotional response generation, emotion labels are simply used as additional conditions in prior, posterior and decoder networks. Considering that emotion styles are naturally entangled with semantic contents in the language space, the Emo-CVAE model utilizes emotion labels to regularize the CVAE latent space by introducing an extra emotion prediction network. In the training stage, the estimated latent variables are required to predict the emotion labels and token sequences of the input responses simultaneously. Experimental results show that our Emo-CVAE model can learn a more informative and structured latent space than a conventional CVAE model and output responses with better content and emotion performance than baseline CVAE and sequence-to-sequence (Seq2Seq) models.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.