Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

TSGN: Transaction Subgraph Networks for Identifying Ethereum Phishing Accounts (2104.08767v2)

Published 18 Apr 2021 in cs.CR and cs.LG

Abstract: Blockchain technology and, in particular, blockchain-based transaction offers us information that has never been seen before in the financial world. In contrast to fiat currencies, transactions through virtual currencies like Bitcoin are completely public. And these transactions of cryptocurrencies are permanently recorded on Blockchain and are available at any time. Therefore, this allows us to build transaction networks (TN) to analyze illegal phenomenons such as phishing scams in blockchain from a network perspective. In this paper, we propose a Transaction SubGraph Network (TSGN) based classification model to identify phishing accounts in Ethereum. Firstly we extract transaction subgraphs for each address and then expand these subgraphs into corresponding TSGNs based on the different mapping mechanisms. We find that TSGNs can provide more potential information to benefit the identification of phishing accounts. Moreover, Directed-TSGNs, by introducing direction attributes, can retain the transaction flow information that captures the significant topological pattern of phishing scams. By comparing with the TSGN, Directed-TSGN indeed has much lower time complexity, benefiting the graph representation learning. Experimental results demonstrate that, combined with network representation algorithms, the TSGN model can capture more features to enhance the classification algorithm and improve phishing nodes' identification accuracy in the Ethereum networks.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.