Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Dual-View Distilled BERT for Sentence Embedding (2104.08675v1)

Published 18 Apr 2021 in cs.AI and cs.CL

Abstract: Recently, BERT realized significant progress for sentence matching via word-level cross sentence attention. However, the performance significantly drops when using siamese BERT-networks to derive two sentence embeddings, which fall short in capturing the global semantic since the word-level attention between two sentences is absent. In this paper, we propose a Dual-view distilled BERT~(DvBERT) for sentence matching with sentence embeddings. Our method deals with a sentence pair from two distinct views, i.e., Siamese View and Interaction View. Siamese View is the backbone where we generate sentence embeddings. Interaction View integrates the cross sentence interaction as multiple teachers to boost the representation ability of sentence embeddings. Experiments on six STS tasks show that our method outperforms the state-of-the-art sentence embedding methods significantly.

Citations (14)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)