Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 61 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Age Range Estimation using MTCNN and VGG-Face Model (2104.08585v1)

Published 17 Apr 2021 in cs.CV

Abstract: The Convolutional Neural Network has amazed us with its usage on several applications. Age range estimation using CNN is emerging due to its application in myriad of areas which makes it a state-of-the-art area for research and improve the estimation accuracy. A deep CNN model is used for identification of people's age range in our proposed work. At first, we extracted only face images from image dataset using MTCNN to remove unnecessary features other than face from the image. Secondly, we used random crop technique for data augmentation to improve the model performance. We have used the concept of transfer learning in our research. A pretrained face recognition model i.e VGG-Face is used to build our model for identification of age range whose performance is evaluated on Adience Benchmark for confirming the efficacy of our work. The performance in test set outperformed existing state-of-the-art by substantial margins.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.