Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Embodying Pre-Trained Word Embeddings Through Robot Actions (2104.08521v1)

Published 17 Apr 2021 in cs.RO, cs.AI, cs.CL, and cs.LG

Abstract: We propose a promising neural network model with which to acquire a grounded representation of robot actions and the linguistic descriptions thereof. Properly responding to various linguistic expressions, including polysemous words, is an important ability for robots that interact with people via linguistic dialogue. Previous studies have shown that robots can use words that are not included in the action-description paired datasets by using pre-trained word embeddings. However, the word embeddings trained under the distributional hypothesis are not grounded, as they are derived purely from a text corpus. In this letter, we transform the pre-trained word embeddings to embodied ones by using the robot's sensory-motor experiences. We extend a bidirectional translation model for actions and descriptions by incorporating non-linear layers that retrofit the word embeddings. By training the retrofit layer and the bidirectional translation model alternately, our proposed model is able to transform the pre-trained word embeddings to adapt to a paired action-description dataset. Our results demonstrate that the embeddings of synonyms form a semantic cluster by reflecting the experiences (actions and environments) of a robot. These embeddings allow the robot to properly generate actions from unseen words that are not paired with actions in a dataset.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube