Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Frequency-based Distortions in Contextualized Word Embeddings (2104.08465v1)

Published 17 Apr 2021 in cs.CL

Abstract: How does word frequency in pre-training data affect the behavior of similarity metrics in contextualized BERT embeddings? Are there systematic ways in which some word relationships are exaggerated or understated? In this work, we explore the geometric characteristics of contextualized word embeddings with two novel tools: (1) an identity probe that predicts the identity of a word using its embedding; (2) the minimal bounding sphere for a word's contextualized representations. Our results reveal that words of high and low frequency differ significantly with respect to their representational geometry. Such differences introduce distortions: when compared to human judgments, point estimates of embedding similarity (e.g., cosine similarity) can over- or under-estimate the semantic similarity of two words, depending on the frequency of those words in the training data. This has downstream societal implications: BERT-Base has more trouble differentiating between South American and African countries than North American and European ones. We find that these distortions persist when using BERT-Multilingual, suggesting that they cannot be easily fixed with additional data, which in turn introduces new distortions.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.