Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Neural Path Hunter: Reducing Hallucination in Dialogue Systems via Path Grounding (2104.08455v2)

Published 17 Apr 2021 in cs.CL

Abstract: Dialogue systems powered by large pre-trained LLMs (LM) exhibit an innate ability to deliver fluent and natural-looking responses. Despite their impressive generation performance, these models can often generate factually incorrect statements impeding their widespread adoption. In this paper, we focus on the task of improving the faithfulness -- and thus reduce hallucination -- of Neural Dialogue Systems to known facts supplied by a Knowledge Graph (KG). We propose Neural Path Hunter which follows a generate-then-refine strategy whereby a generated response is amended using the k-hop subgraph of a KG. Neural Path Hunter leverages a separate token-level fact critic to identify plausible sources of hallucination followed by a refinement stage consisting of a chain of two neural LM's that retrieves correct entities by crafting a query signal that is propagated over the k-hop subgraph. Our proposed model can easily be applied to any dialogue generated responses without retraining the model. We empirically validate our proposed approach on the OpenDialKG dataset against a suite of metrics and report a relative improvement of faithfulness over dialogue responses by 20.35% based on FeQA (Durmus et al., 2020).

Citations (118)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube