Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Action Advising with Advice Imitation in Deep Reinforcement Learning (2104.08441v1)

Published 17 Apr 2021 in cs.LG and cs.AI

Abstract: Action advising is a peer-to-peer knowledge exchange technique built on the teacher-student paradigm to alleviate the sample inefficiency problem in deep reinforcement learning. Recently proposed student-initiated approaches have obtained promising results. However, due to being in the early stages of development, these also have some substantial shortcomings. One of the abilities that are absent in the current methods is further utilising advice by reusing, which is especially crucial in the practical settings considering the budget and cost constraints in peer-to-peer. In this study, we present an approach to enable the student agent to imitate previously acquired advice to reuse them directly in its exploration policy, without any interventions in the learning mechanism itself. In particular, we employ a behavioural cloning module to imitate the teacher policy and use dropout regularisation to have a notion of epistemic uncertainty to keep track of which state-advice pairs are actually collected. As the results of experiments we conducted in three Atari games show, advice reusing via generalisation is indeed a feasible option in deep RL and our approach can successfully achieve this while significantly improving the learning performance, even when paired with a simple early advising heuristic.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.