Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Motion Prediction Performance Analysis for Autonomous Driving Systems and the Effects of Tracking Noise (2104.08368v2)

Published 16 Apr 2021 in cs.CV and cs.AI

Abstract: Autonomous driving consists of a multitude of interacting modules, where each module must contend with errors from the others. Typically, the motion prediction module depends upon a robust tracking system to capture each agent's past movement. In this work, we systematically explore the importance of the tracking module for the motion prediction task and ultimately conclude that the overall motion prediction performance is highly sensitive to the tracking module's imperfections. We explicitly compare models that use tracking information to models that do not across multiple scenarios and conditions. We find that the tracking information plays an essential role and improves motion prediction performance in noise-free conditions. However, in the presence of tracking noise, it can potentially affect the overall performance if not studied thoroughly. We thus argue practitioners should be mindful of noise when developing and testing motion/tracking modules, or that they should consider tracking free alternatives.

Citations (2)

Summary

We haven't generated a summary for this paper yet.