Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

An Analysis of a BERT Deep Learning Strategy on a Technology Assisted Review Task (2104.08340v1)

Published 16 Apr 2021 in cs.IR and cs.LG

Abstract: Document screening is a central task within Evidenced Based Medicine, which is a clinical discipline that supplements scientific proof to back medical decisions. Given the recent advances in DL (Deep Learning) methods applied to Information Retrieval tasks, I propose a DL document classification approach with BERT or PubMedBERT embeddings and a DL similarity search path using SBERT embeddings to reduce physicians' tasks of screening and classifying immense amounts of documents to answer clinical queries. I test and evaluate the retrieval effectiveness of my DL strategy on the 2017 and 2018 CLEF eHealth collections. I find that the proposed DL strategy works, I compare it to the recently successful BM25 plus RM3 model, and conclude that the suggested method accomplishes advanced retrieval performance in the initial ranking of the articles with the aforementioned datasets, for the CLEF eHealth Technologically Assisted Reviews in Empirical Medicine Task.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)