Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Flexible Instance-Specific Rationalization of NLP Models (2104.08219v2)

Published 16 Apr 2021 in cs.CL and cs.AI

Abstract: Recent research on model interpretability in natural language processing extensively uses feature scoring methods for identifying which parts of the input are the most important for a model to make a prediction (i.e. explanation or rationale). However, previous research has shown that there is no clear best scoring method across various text classification tasks while practitioners typically have to make several other ad-hoc choices regarding the length and the type of the rationale (e.g. short or long, contiguous or not). Inspired by this, we propose a simple yet effective and flexible method that allows selecting optimally for each data instance: (1) a feature scoring method; (2) the length; and (3) the type of the rationale. Our method is inspired by input erasure approaches to interpretability which assume that the most faithful rationale for a prediction should be the one with the highest difference between the model's output distribution using the full text and the text after removing the rationale as input respectively. Evaluation on four standard text classification datasets shows that our proposed method provides more faithful, comprehensive and highly sufficient explanations compared to using a fixed feature scoring method, rationale length and type. More importantly, we demonstrate that a practitioner is not required to make any ad-hoc choices in order to extract faithful rationales using our approach.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.