Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Supervising Model Attention with Human Explanations for Robust Natural Language Inference (2104.08142v3)

Published 16 Apr 2021 in cs.CL and cs.LG

Abstract: Natural Language Inference (NLI) models are known to learn from biases and artefacts within their training data, impacting how well they generalise to other unseen datasets. Existing de-biasing approaches focus on preventing the models from learning these biases, which can result in restrictive models and lower performance. We instead investigate teaching the model how a human would approach the NLI task, in order to learn features that will generalise better to previously unseen examples. Using natural language explanations, we supervise the model's attention weights to encourage more attention to be paid to the words present in the explanations, significantly improving model performance. Our experiments show that the in-distribution improvements of this method are also accompanied by out-of-distribution improvements, with the supervised models learning from features that generalise better to other NLI datasets. Analysis of the model indicates that human explanations encourage increased attention on the important words, with more attention paid to words in the premise and less attention paid to punctuation and stop-words.

Citations (39)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.