Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximating the Earth Mover's Distance between sets of geometric objects (2104.08136v2)

Published 16 Apr 2021 in cs.CG

Abstract: Given two distributions $P$ and $S$ of equal total mass, the Earth Mover's Distance measures the cost of transforming one distribution into the other, where the cost of moving a unit of mass is equal to the distance over which it is moved. We give approximation algorithms for the Earth Mover's Distance between various sets of geometric objects. We give a $(1 + \varepsilon)$-approximation when $P$ is a set of weighted points and $S$ is a set of line segments, triangles or $d$-dimensional simplices. When $P$ and $S$ are both sets of line segments, sets of triangles or sets of simplices, we give a $(1 + \varepsilon)$-approximation with a small additive term. All algorithms run in time polynomial in the size of $P$ and $S$, and actually calculate the transport plan (that is, a specification of how to move the mass), rather than just the cost. To our knowledge, these are the first combinatorial algorithms with a provable approximation ratio for the Earth Mover's Distance when the objects are continuous rather than discrete points.

Citations (2)

Summary

We haven't generated a summary for this paper yet.