Papers
Topics
Authors
Recent
2000 character limit reached

Faithful and Plausible Explanations of Medical Code Predictions (2104.07894v1)

Published 16 Apr 2021 in cs.LG and cs.CL

Abstract: Machine learning models that offer excellent predictive performance often lack the interpretability necessary to support integrated human machine decision-making. In clinical medicine and other high-risk settings, domain experts may be unwilling to trust model predictions without explanations. Work in explainable AI must balance competing objectives along two different axes: 1) Explanations must balance faithfulness to the model's decision-making with their plausibility to a domain expert. 2) Domain experts desire local explanations of individual predictions and global explanations of behavior in aggregate. We propose to train a proxy model that mimics the behavior of the trained model and provides fine-grained control over these trade-offs. We evaluate our approach on the task of assigning ICD codes to clinical notes to demonstrate that explanations from the proxy model are faithful and replicate the trained model behavior.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.