Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 116 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Random Persistence Diagram Generator (2104.07737v4)

Published 15 Apr 2021 in stat.ML, cs.LG, and math.AT

Abstract: Topological data analysis (TDA) studies the shape patterns of data. Persistent homology is a widely used method in TDA that summarizes homological features of data at multiple scales and stores them in persistence diagrams (PDs). In this paper, we propose a random persistence diagram generator (RPDG) method that generates a sequence of random PDs from the ones produced by the data. RPDG is underpinned by a model based on pairwise interacting point processes, and a reversible jump Markov chain Monte Carlo (RJ-MCMC) algorithm. A first example, which is based on a synthetic dataset, demonstrates the efficacy of RPDG and provides a comparison with another method for sampling PDs. A second example demonstrates the utility of RPDG to solve a materials science problem given a real dataset of small sample size.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.