Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Unmasking the Mask -- Evaluating Social Biases in Masked Language Models (2104.07496v1)

Published 15 Apr 2021 in cs.CL

Abstract: Masked LLMs (MLMs) have shown superior performances in numerous downstream NLP tasks when used as text encoders. Unfortunately, MLMs also demonstrate significantly worrying levels of social biases. We show that the previously proposed evaluation metrics for quantifying the social biases in MLMs are problematic due to following reasons: (1) prediction accuracy of the masked tokens itself tend to be low in some MLMs, which raises questions regarding the reliability of the evaluation metrics that use the (pseudo) likelihood of the predicted tokens, and (2) the correlation between the prediction accuracy of the mask and the performance in downstream NLP tasks is not taken into consideration, and (3) high frequency words in the training data are masked more often, introducing noise due to this selection bias in the test cases. To overcome the above-mentioned disfluencies, we propose All Unmasked Likelihood (AUL), a bias evaluation measure that predicts all tokens in a test case given the MLM embedding of the unmasked input. We find that AUL accurately detects different types of biases in MLMs. We also propose AUL with attention weights (AULA) to evaluate tokens based on their importance in a sentence. However, unlike AUL and AULA, previously proposed bias evaluation measures for MLMs systematically overestimate the measured biases, and are heavily influenced by the unmasked tokens in the context.

Citations (64)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.