Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Memory Capacity of Recurrent Neural Networks with Matrix Representation (2104.07454v3)

Published 11 Apr 2021 in cs.LG, cs.AI, and cs.CC

Abstract: It is well known that canonical recurrent neural networks (RNNs) face limitations in learning long-term dependencies which have been addressed by memory structures in long short-term memory (LSTM) networks. Neural Turing machines (NTMs) are novel RNNs that implement the notion of programmable computers with neural network controllers that can learn simple algorithmic tasks. Matrix neural networks feature matrix representation which inherently preserves the spatial structure of data when compared to canonical neural networks that use vector-based representation. One may then argue that neural networks with matrix representations may have the potential to provide better memory capacity. In this paper, we define and study a probabilistic notion of memory capacity based on Fisher information for matrix-based RNNs. We find bounds on memory capacity for such networks under various hypotheses and compare them with their vector counterparts. In particular, we show that the memory capacity of such networks is bounded by $N2$ for $N\times N$ state matrix which generalizes the one known for vector networks. We also show and analyze the increase in memory capacity for such networks which is introduced when one exhibits an external state memory, such as NTMs. Consequently, we construct NTMs with RNN controllers with matrix-based representation of external memory, leading us to introduce Matrix NTMs. We demonstrate the performance of this class of memory networks under certain algorithmic learning tasks such as copying and recall and compare it with Matrix RNNs. We find an improvement in the performance of Matrix NTMs by the addition of external memory, in comparison to Matrix RNNs.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.