Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Hyperbolic Neural Collaborative Recommender (2104.07414v1)

Published 15 Apr 2021 in cs.IR

Abstract: This paper explores the use of hyperbolic geometry and deep learning techniques for recommendation. We present Hyperbolic Neural Collaborative Recommender (HNCR), a deep hyperbolic representation learning method that exploits mutual semantic relations among users/items for collaborative filtering (CF) tasks. HNCR contains two major phases: neighbor construction and recommendation framework. The first phase introduces a neighbor construction strategy to construct a semantic neighbor set for each user and item according to the user-item historical interaction. In the second phase, we develop a deep framework based on hyperbolic geometry to integrate constructed neighbor sets into recommendation. Via a series of extensive experiments, we show that HNCR outperforms its Euclidean counterpart and state-of-the-art baselines.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.