Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

BERT based Transformers lead the way in Extraction of Health Information from Social Media (2104.07367v1)

Published 15 Apr 2021 in cs.CL and cs.SI

Abstract: This paper describes our submissions for the Social Media Mining for Health (SMM4H)2021 shared tasks. We participated in 2 tasks:(1) Classification, extraction and normalization of adverse drug effect (ADE) mentions in English tweets (Task-1) and (2) Classification of COVID-19 tweets containing symptoms(Task-6). Our approach for the first task uses the language representation model RoBERTa with a binary classification head. For the second task, we use BERTweet, based on RoBERTa. Fine-tuning is performed on the pre-trained models for both tasks. The models are placed on top of a custom domain-specific processing pipeline. Our system ranked first among all the submissions for subtask-1(a) with an F1-score of 61%. For subtask-1(b), our system obtained an F1-score of 50% with improvements up to +8% F1 over the score averaged across all submissions. The BERTweet model achieved an F1 score of 94% on SMM4H 2021 Task-6.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.