Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

State and Topology Estimation for Unobservable Distribution Systems using Deep Neural Networks (2104.07208v2)

Published 15 Apr 2021 in cs.LG and eess.SP

Abstract: Time-synchronized state estimation for reconfigurable distribution networks is challenging because of limited real-time observability. This paper addresses this challenge by formulating a deep learning (DL)-based approach for topology identification (TI) and unbalanced three-phase distribution system state estimation (DSSE). Two deep neural networks (DNNs) are trained for time-synchronized DNN-based TI and DSSE, respectively, for systems that are incompletely observed by synchrophasor measurement devices (SMDs) in real-time. A data-driven approach for judicious SMD placement to facilitate reliable TI and DSSE is also provided. Robustness of the proposed methodology is demonstrated by considering non-Gaussian noise in the SMD measurements. A comparison of the DNN-based DSSE with more conventional approaches indicates that the DL-based approach gives better accuracy with smaller number of SMDs.

Citations (50)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.