Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 149 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Evaluating Standard Feature Sets Towards Increased Generalisability and Explainability of ML-based Network Intrusion Detection (2104.07183v2)

Published 15 Apr 2021 in cs.CR, cs.LG, and cs.NI

Abstract: Machine Learning (ML)-based network intrusion detection systems bring many benefits for enhancing the cybersecurity posture of an organisation. Many systems have been designed and developed in the research community, often achieving a close to perfect detection rate when evaluated using synthetic datasets. However, the high number of academic research has not often translated into practical deployments. There are several causes contributing towards the wide gap between research and production, such as the limited ability of comprehensive evaluation of ML models and lack of understanding of internal ML operations. This paper tightens the gap by evaluating the generalisability of a common feature set to different network environments and attack scenarios. Therefore, two feature sets (NetFlow and CICFlowMeter) have been evaluated in terms of detection accuracy across three key datasets, i.e., CSE-CIC-IDS2018, BoT-IoT, and ToN-IoT. The results show the superiority of the NetFlow feature set in enhancing the ML models detection accuracy of various network attacks. In addition, due to the complexity of the learning models, SHapley Additive exPlanations (SHAP), an explainable AI methodology, has been adopted to explain and interpret the classification decisions of ML models. The Shapley values of two common feature sets have been analysed across multiple datasets to determine the influence contributed by each feature towards the final ML prediction.

Citations (49)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.