Papers
Topics
Authors
Recent
2000 character limit reached

Data-driven Actuator Selection for Artificial Muscle-Powered Robots (2104.07168v1)

Published 15 Apr 2021 in cs.RO and cs.LG

Abstract: Even though artificial muscles have gained popularity due to their compliant, flexible, and compact properties, there currently does not exist an easy way of making informed decisions on the appropriate actuation strategy when designing a muscle-powered robot; thus limiting the transition of such technologies into broader applications. What's more, when a new muscle actuation technology is developed, it is difficult to compare it against existing robot muscles. To accelerate the development of artificial muscle applications, we propose a data driven approach for robot muscle actuator selection using Support Vector Machines (SVM). This first-of-its-kind method gives users gives users insight into which actuators fit their specific needs and actuation performance criteria, making it possible for researchers and engineer with little to no prior knowledge of artificial muscles to focus on application design. It also provides a platform to benchmark existing, new, or yet-to-be-discovered artificial muscle technologies. We test our method on unseen existing robot muscle designs to prove its usability on real-world applications. We provide an open-access, web-searchable interface for easy access to our models that will additionally allow for continuous contribution of new actuator data from groups around the world to enhance and expand these models.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.