Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 177 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Efficient conformer-based speech recognition with linear attention (2104.06865v2)

Published 14 Apr 2021 in cs.SD and eess.AS

Abstract: Recently, conformer-based end-to-end automatic speech recognition, which outperforms recurrent neural network based ones, has received much attention. Although the parallel computing of conformer is more efficient than recurrent neural networks, the computational complexity of its dot-product self-attention is quadratic with respect to the length of the input feature. To reduce the computational complexity of the self-attention layer, we propose multi-head linear self-attention for the self-attention layer, which reduces its computational complexity to linear order. In addition, we propose to factorize the feed forward module of the conformer by low-rank matrix factorization, which successfully reduces the number of the parameters by approximate 50% with little performance loss. The proposed model, named linear attention based conformer (LAC), can be trained and inferenced jointly with the connectionist temporal classification objective, which further improves the performance of LAC. To evaluate the effectiveness of LAC, we conduct experiments on the AISHELL-1 and LibriSpeech corpora. Results show that the proposed LAC achieves better performance than 7 recently proposed speech recognition models, and is competitive with the state-of-the-art conformer. Meanwhile, the proposed LAC has a number of parameters of only 50% over the conformer with faster training speed than the latter.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube