Papers
Topics
Authors
Recent
2000 character limit reached

Dynamic Coded Caching in Wireless Networks Using Multi-Agent Reinforcement Learning (2104.06724v1)

Published 14 Apr 2021 in cs.IT and math.IT

Abstract: We consider distributed caching of content across several small base stations (SBSs) in a wireless network, where the content is encoded using a maximum distance separable code. Specifically, we apply soft time-to-live (STTL) cache management policies, where coded packets may be evicted from the caches at periodic times. We propose a reinforcement learning (RL) approach to find coded STTL policies minimizing the overall network load. We demonstrate that such caching policies achieve almost the same network load as policies obtained through optimization, where the latter assumes perfect knowledge of the distribution of times between file requests as well the distribution of the number of SBSs within communication range of a user placing a request. We also suggest a multi-agent RL (MARL) framework for the scenario of non-uniformly distributed requests in space. For such a scenario, we show that MARL caching policies achieve lower network load as compared to optimized caching policies assuming a uniform request placement. We also provide convincing evidence that synchronous updates offer a lower network load than asynchronous updates for spatially homogeneous renewal request processes due to the memory of the renewal processes.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.