Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Novel Approach to Curiosity and Explainable Reinforcement Learning via Interpretable Sub-Goals (2104.06630v2)

Published 14 Apr 2021 in cs.LG

Abstract: Two key challenges within Reinforcement Learning involve improving (a) agent learning within environments with sparse extrinsic rewards and (b) the explainability of agent actions. We describe a curious subgoal focused agent to address both these challenges. We use a novel method for curiosity produced from a Generative Adversarial Network (GAN) based model of environment transitions that is robust to stochastic environment transitions. Additionally, we use a subgoal generating network to guide navigation. The explainability of the agent's behavior is increased by decomposing complex tasks into a sequence of interpretable subgoals that do not require any manual design. We show that this method also enables the agent to solve challenging procedurally-generated tasks that contain stochastic transitions above other state-of-the-art methods.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.