Zero-Resource Multi-Dialectal Arabic Natural Language Understanding (2104.06591v2)
Abstract: A reasonable amount of annotated data is required for fine-tuning pre-trained LLMs (PLM) on downstream tasks. However, obtaining labeled examples for different language varieties can be costly. In this paper, we investigate the zero-shot performance on Dialectal Arabic (DA) when fine-tuning a PLM on modern standard Arabic (MSA) data only -- identifying a significant performance drop when evaluating such models on DA. To remedy such performance drop, we propose self-training with unlabeled DA data and apply it in the context of named entity recognition (NER), part-of-speech (POS) tagging, and sarcasm detection (SRD) on several DA varieties. Our results demonstrate the effectiveness of self-training with unlabeled DA data: improving zero-shot MSA-to-DA transfer by as large as $\sim$10\% F$_1$ (NER), 2\% accuracy (POS tagging), and 4.5\% F$_1$ (SRD). We conduct an ablation experiment and show that the performance boost observed directly results from the unlabeled DA examples used for self-training. Our work opens up opportunities for leveraging the relatively abundant labeled MSA datasets to develop DA models for zero and low-resource dialects. We also report new state-of-the-art performance on all three tasks and open-source our fine-tuned models for the research community.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.