Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Detecting False Data Injection Attacks in Smart Grids with Modeling Errors: A Deep Transfer Learning Based Approach (2104.06307v3)

Published 9 Apr 2021 in eess.SP, cs.CR, cs.LG, cs.SY, and eess.SY

Abstract: Most traditional false data injection attack (FDIA) detection approaches rely on a key assumption, i.e., the power system can be accurately modeled. However, the transmission line parameters are dynamic and cannot be accurately known during operation and thus the involved modeling errors should not be neglected. In this paper, an illustrative case has revealed that modeling errors in transmission lines significantly weaken the detection effectiveness of conventional FDIA approaches. To tackle this issue, we propose an FDIA detection mechanism from the perspective of transfer learning. Specifically, the simulated power system is treated as a source domain, which provides abundant simulated normal and attack data. The real world's running system whose transmission line parameters are unknown is taken as a target domain where sufficient real normal data are collected for tracking the latest system states online. The designed transfer strategy that aims at making full use of data in hand is divided into two optimization stages. In the first stage, a deep neural network (DNN) is built by simultaneously optimizing several well-designed objective terms with both simulated data and real data, and then it is fine-tuned via real data in the second stage. Several case studies on the IEEE 14-bus and 118-bus systems verify the effectiveness of the proposed mechanism.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube