Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

An Adversarial Imitation Click Model for Information Retrieval (2104.06077v2)

Published 13 Apr 2021 in cs.IR

Abstract: Modern information retrieval systems, including web search, ads placement, and recommender systems, typically rely on learning from user feedback. Click models, which study how users interact with a ranked list of items, provide a useful understanding of user feedback for learning ranking models. Constructing "right" dependencies is the key of any successful click model. However, probabilistic graphical models (PGMs) have to rely on manually assigned dependencies, and oversimplify user behaviors. Existing neural network based methods promote PGMs by enhancing the expressive ability and allowing flexible dependencies, but still suffer from exposure bias and inferior estimation. In this paper, we propose a novel framework, Adversarial Imitation Click Model (AICM), based on imitation learning. Firstly, we explicitly learn the reward function that recovers users' intrinsic utility and underlying intentions. Secondly, we model user interactions with a ranked list as a dynamic system instead of one-step click prediction, alleviating the exposure bias problem. Finally, we minimize the JS divergence through adversarial training and learn a stable distribution of click sequences, which makes AICM generalize well across different distributions of ranked lists. A theoretical analysis has indicated that AICM reduces the exposure bias from $O(T2)$ to $O(T)$. Our studies on a public web search dataset show that AICM not only outperforms state-of-the-art models in traditional click metrics but also achieves superior performance in addressing the exposure bias and recovering the underlying patterns of click sequences.

Citations (31)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.