Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

VariTex: Variational Neural Face Textures (2104.05988v3)

Published 13 Apr 2021 in cs.CV, cs.AI, cs.GR, and cs.LG

Abstract: Deep generative models can synthesize photorealistic images of human faces with novel identities. However, a key challenge to the wide applicability of such techniques is to provide independent control over semantically meaningful parameters: appearance, head pose, face shape, and facial expressions. In this paper, we propose VariTex - to the best of our knowledge the first method that learns a variational latent feature space of neural face textures, which allows sampling of novel identities. We combine this generative model with a parametric face model and gain explicit control over head pose and facial expressions. To generate complete images of human heads, we propose an additive decoder that adds plausible details such as hair. A novel training scheme enforces a pose-independent latent space and in consequence, allows learning a one-to-many mapping between latent codes and pose-conditioned exterior regions. The resulting method can generate geometrically consistent images of novel identities under fine-grained control over head pose, face shape, and facial expressions. This facilitates a broad range of downstream tasks, like sampling novel identities, changing the head pose, expression transfer, and more. Code and models are available for research on https://mcbuehler.github.io/VariTex.

Citations (34)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube