Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Learning Robust Visual-semantic Mapping for Zero-shot Learning (2104.05668v1)

Published 12 Apr 2021 in cs.CV

Abstract: Zero-shot learning (ZSL) aims at recognizing unseen class examples (e.g., images) with knowledge transferred from seen classes. This is typically achieved by exploiting a semantic feature space shared by both seen and unseen classes, e.g., attributes or word vectors, as the bridge. In ZSL, the common practice is to train a mapping function between the visual and semantic feature spaces with labeled seen class examples. When inferring, given unseen class examples, the learned mapping function is reused to them and recognizes the class labels on some metrics among their semantic relations. However, the visual and semantic feature spaces are generally independent and exist in entirely different manifolds. Under such a paradigm, the ZSL models may easily suffer from the domain shift problem when constructing and reusing the mapping function, which becomes the major challenge in ZSL. In this thesis, we explore effective ways to mitigate the domain shift problem and learn a robust mapping function between the visual and semantic feature spaces. We focus on fully empowering the semantic feature space, which is one of the key building blocks of ZSL. In summary, this thesis targets fully empowering the semantic feature space and design effective solutions to mitigate the domain shift problem and hence obtain a more robust visual-semantic mapping function for ZSL. Extensive experiments on various datasets demonstrate the effectiveness of our proposed methods.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)