Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Improvement of Noise-Robust Single-Channel Voice Activity Detection with Spatial Pre-processing (2104.05481v1)

Published 12 Apr 2021 in eess.AS, cs.SD, and eess.SP

Abstract: Voice activity detection (VAD) remains a challenge in noisy environments. With access to multiple microphones, prior studies have attempted to improve the noise robustness of VAD by creating multi-channel VAD (MVAD) methods. However, MVAD is relatively new compared to single-channel VAD (SVAD), which has been thoroughly developed in the past. It might therefore be advantageous to improve SVAD methods with pre-processing to obtain superior VAD, which is under-explored. This paper improves SVAD through two pre-processing methods, a beamformer and a spatial target speaker detector. The spatial detector sets signal frames to zero when no potential speaker is present within a target direction. The detector may be implemented as a filter, meaning the input signal for the SVAD is filtered according to the detector's output; or it may be implemented as a spatial VAD to be combined with the SVAD output. The evaluation is made on a noisy reverberant speech database, with clean speech from the Aurora 2 database and with white and babble noise. The results show that SVAD algorithms are significantly improved by the presented pre-processing methods, especially the spatial detector, across all signal-to-noise ratios. The SVAD algorithms with pre-processing significantly outperform a baseline MVAD in challenging noise conditions.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.