Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Unsuitability of NOTEARS for Causal Graph Discovery (2104.05441v2)

Published 12 Apr 2021 in stat.ML, cs.LG, math.ST, and stat.TH

Abstract: Causal Discovery methods aim to identify a DAG structure that represents causal relationships from observational data. In this article, we stress that it is important to test such methods for robustness in practical settings. As our main example, we analyze the NOTEARS method, for which we demonstrate a lack of scale-invariance. We show that NOTEARS is a method that aims to identify a parsimonious DAG from the data that explains the residual variance. We conclude that NOTEARS is not suitable for identifying truly causal relationships from the data.

Citations (58)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.