Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Bop and Beyond: A Second Order Optimizer for Binarized Neural Networks (2104.05124v1)

Published 11 Apr 2021 in cs.CV

Abstract: The optimization of Binary Neural Networks (BNNs) relies on approximating the real-valued weights with their binarized representations. Current techniques for weight-updating use the same approaches as traditional Neural Networks (NNs) with the extra requirement of using an approximation to the derivative of the sign function - as it is the Dirac-Delta function - for back-propagation; thus, efforts are focused adapting full-precision techniques to work on BNNs. In the literature, only one previous effort has tackled the problem of directly training the BNNs with bit-flips by using the first raw moment estimate of the gradients and comparing it against a threshold for deciding when to flip a weight (Bop). In this paper, we take an approach parallel to Adam which also uses the second raw moment estimate to normalize the first raw moment before doing the comparison with the threshold, we call this method Bop2ndOrder. We present two versions of the proposed optimizer: a biased one and a bias-corrected one, each with its own applications. Also, we present a complete ablation study of the hyperparameters space, as well as the effect of using schedulers on each of them. For these studies, we tested the optimizer in CIFAR10 using the BinaryNet architecture. Also, we tested it in ImageNet 2012 with the XnorNet and BiRealNet architectures for accuracy. In both datasets our approach proved to converge faster, was robust to changes of the hyperparameters, and achieved better accuracy values.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.