Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The algebraic structure of the densification and the sparsification tasks for CSPs (2104.05065v3)

Published 11 Apr 2021 in cs.CC and cs.LO

Abstract: The tractability of certain CSPs for dense or sparse instances is known from the 90s. Recently, the densification and the sparsification of CSPs were formulated as computational tasks and the systematical study of their computational complexity was initiated. We approach this problem by introducing the densification operator, i.e. the closure operator that, given an instance of a CSP, outputs all constraints that are satisfied by all of its solutions. According to the Galois theory of closure operators, any such operator is related to a certain implicational system (or, a functional dependency) $\Sigma$. We are specifically interested in those classes of fixed-template CSPs, parameterized by constraint languages $\Gamma$, for which there is an implicational system $\Sigma$ whose size is a polynomial in the number of variables $n$. We show that in the Boolean case, such implicational systems exist if and only if $\Gamma$ is of bounded width. For such languages, $\Sigma$ can be computed in log-space or in a logarithmic time with a polynomial number of processors. Given an implicational system $\Sigma$, the densification task is equivalent to the computation of the closure of input constraints. The sparsification task is equivalent to the computation of the minimal key.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube