Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 229 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Hybrid Parallelization Approach for Distributed and Scalable Deep Learning (2104.05035v2)

Published 11 Apr 2021 in cs.DC

Abstract: Recently, Deep Neural Networks (DNNs) have recorded great success in handling medical and other complex classification tasks. However, as the sizes of a DNN model and the available dataset increase, the training process becomes more complex and computationally intensive, which usually takes a longer time to complete. In this work, we have proposed a generic full end-to-end hybrid parallelization approach combining both model and data parallelism for efficiently distributed and scalable training of DNN models. We have also proposed a Genetic Algorithm based heuristic resources allocation mechanism (GABRA) for optimal distribution of partitions on the available GPUs for computing performance optimization. We have applied our proposed approach to a real use case based on 3D Residual Attention Deep Neural Network (3D-ResAttNet) for efficient Alzheimer Disease (AD) diagnosis on multiple GPUs. The experimental evaluation shows that the proposed approach is efficient and scalable, which achieves almost linear speedup with little or no differences in accuracy performance when compared with the existing non-parallel DNN models.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube