Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Zero-Shot Learning on 3D Point Cloud Objects and Beyond (2104.04980v1)

Published 11 Apr 2021 in cs.CV

Abstract: Zero-shot learning, the task of learning to recognize new classes not seen during training, has received considerable attention in the case of 2D image classification. However, despite the increasing ubiquity of 3D sensors, the corresponding 3D point cloud classification problem has not been meaningfully explored and introduces new challenges. In this paper, we identify some of the challenges and apply 2D Zero-Shot Learning (ZSL) methods in the 3D domain to analyze the performance of existing models. Then, we propose a novel approach to address the issues specific to 3D ZSL. We first present an inductive ZSL process and then extend it to the transductive ZSL and Generalized ZSL (GZSL) settings for 3D point cloud classification. To this end, a novel loss function is developed that simultaneously aligns seen semantics with point cloud features and takes advantage of unlabeled test data to address some known issues (e.g., the problems of domain adaptation, hubness, and data bias). While designed for the particularities of 3D point cloud classification, the method is shown to also be applicable to the more common use-case of 2D image classification. An extensive set of experiments is carried out, establishing state-of-the-art for ZSL and GZSL on synthetic (ModelNet40, ModelNet10, McGill) and real (ScanObjectNN) 3D point cloud datasets.

Citations (50)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.