Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Auto-weighted Multi-view Feature Selection with Graph Optimization (2104.04906v1)

Published 11 Apr 2021 in cs.LG and cs.AI

Abstract: In this paper, we focus on the unsupervised multi-view feature selection which tries to handle high dimensional data in the field of multi-view learning. Although some graph-based methods have achieved satisfactory performance, they ignore the underlying data structure across different views. Besides, their pre-defined laplacian graphs are sensitive to the noises in the original data space, and fail to get the optimal neighbor assignment. To address the above problems, we propose a novel unsupervised multi-view feature selection model based on graph learning, and the contributions are threefold: (1) during the feature selection procedure, the consensus similarity graph shared by different views is learned. Therefore, the proposed model can reveal the data relationship from the feature subset. (2) a reasonable rank constraint is added to optimize the similarity matrix to obtain more accurate information; (3) an auto-weighted framework is presented to assign view weights adaptively, and an effective alternative iterative algorithm is proposed to optimize the problem. Experiments on various datasets demonstrate the superiority of the proposed method compared with the state-of-the-art methods.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube