Papers
Topics
Authors
Recent
2000 character limit reached

Sublinear Time Nearest Neighbor Search over Generalized Weighted Manhattan Distance (2104.04902v2)

Published 11 Apr 2021 in cs.DB

Abstract: Nearest Neighbor Search (NNS) over generalized weighted distances is fundamental to a wide range of applications. The problem of NNS over the generalized weighted square Euclidean distance has been studied in previous work. However, numerous studies have shown that the Manhattan distance could be more effective than the Euclidean distance for high-dimensional NNS, which indicates that the generalized weighted Manhattan distance is possibly more practical than the generalized weighted square Euclidean distance in high dimensions. To the best of our knowledge, no prior work solves the problem of NNS over the generalized weighted Manhattan distance in sublinear time. This paper achieves the goal by proposing two novel hashing schemes ($d_w{l_1},l_2$)-ALSH and ($d_w{l_1},\theta$)-ALSH.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.