Efficient and Robust Discrete Conformal Equivalence with Boundary (2104.04614v1)
Abstract: We describe an efficient algorithm to compute a conformally equivalent metric for a discrete surface, possibly with boundary, exhibiting prescribed Gaussian curvature at all interior vertices and prescribed geodesic curvature along the boundary. Our construction is based on the theory developed in [Gu et al. 2018; Springborn 2020], and in particular relies on results on hyperbolic Delaunay triangulations. Generality is achieved by considering the surface's intrinsic triangulation as a degree of freedom, and particular attention is paid to the proper treatment of surface boundaries. While via a double cover approach the boundary case can be reduced to the closed case quite naturally, the implied symmetry of the setting causes additional challenges related to stable Delaunay-critical configurations that we address explicitly in this work.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.