Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Multimodal Face Synthesis from Visual Attributes (2104.04362v1)

Published 9 Apr 2021 in cs.CV

Abstract: Synthesis of face images from visual attributes is an important problem in computer vision and biometrics due to its applications in law enforcement and entertainment. Recent advances in deep generative networks have made it possible to synthesize high-quality face images from visual attributes. However, existing methods are specifically designed for generating unimodal images (i.e visible faces) from attributes. In this paper, we propose a novel generative adversarial network that simultaneously synthesizes identity preserving multimodal face images (i.e. visible, sketch, thermal, etc.) from visual attributes without requiring paired data in different domains for training the network. We introduce a novel generator with multimodal stretch-out modules to simultaneously synthesize multimodal face images. Additionally, multimodal stretch-in modules are introduced in the discriminator which discriminates between real and fake images. Extensive experiments and comparisons with several state-of-the-art methods are performed to verify the effectiveness of the proposed attribute-based multimodal synthesis method.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)