Papers
Topics
Authors
Recent
2000 character limit reached

Population network structure impacts genetic algorithm optimisation performance (2104.04254v1)

Published 9 Apr 2021 in cs.NE, cs.PF, and cs.SI

Abstract: A genetic algorithm (GA) is a search method that optimises a population of solutions by simulating natural evolution. Good solutions reproduce together to create better candidates. The standard GA assumes that any two solutions can mate. However, in nature and social contexts, social networks can condition the likelihood that two individuals mate. This impact of population network structure over GAs performance is unknown. Here we introduce the Networked Genetic Algorithm (NGA) to evaluate how various random and scale-free population networks influence the optimisation performance of GAs on benchmark functions. We show evidence of significant variations in performance of the NGA as the network varies. In addition, we find that the best-performing population networks, characterised by intermediate density and low average shortest path length, significantly outperform the standard complete network GA. These results may constitute a starting point for network tuning and network control: seeing the network structure of the population as a parameter that can be tuned to improve the performance of evolutionary algorithms, and offer more realistic modelling of social learning.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.