Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Legged Robot State Estimation in Slippery Environments Using Invariant Extended Kalman Filter with Velocity Update (2104.04238v1)

Published 9 Apr 2021 in cs.RO

Abstract: This paper proposes a state estimator for legged robots operating in slippery environments. An Invariant Extended Kalman Filter (InEKF) is implemented to fuse inertial and velocity measurements from a tracking camera and leg kinematic constraints. {\color{black}The misalignment between the camera and the robot-frame is also modeled thus enabling auto-calibration of camera pose.} The leg kinematics based velocity measurement is formulated as a right-invariant observation. Nonlinear observability analysis shows that other than the rotation around the gravity vector and the absolute position, all states are observable except for some singular cases. Discrete observability analysis demonstrates that our filter is consistent with the underlying nonlinear system. An online noise parameter tuning method is developed to adapt to the highly time-varying camera measurement noise. The proposed method is experimentally validated on a Cassie bipedal robot walking over slippery terrain. A video for the experiment can be found at https://youtu.be/VIqJL0cUr7s.

Citations (32)

Summary

We haven't generated a summary for this paper yet.