A Riemannian smoothing steepest descent method for non-Lipschitz optimization on submanifolds (2104.04199v1)
Abstract: In this paper, we propose a Riemannian smoothing steepest descent method to minimize a nonconvex and non-Lipschitz function on submanifolds. The generalized subdifferentials on Riemannian manifold and the Riemannian gradient sub-consistency are defined and discussed. We prove that any accumulation point of the sequence generated by the Riemannian smoothing steepest descent method is a stationary point associated with the smoothing function employed in the method, which is necessary for the local optimality of the original non-Lipschitz problem. Under the Riemannian gradient sub-consistency condition, we also prove that any accumulation point is a Riemannian limiting stationary point of the original non-Lipschitz problem. Numerical experiments are conducted to demonstrate the efficiency of the proposed method.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.