Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 65 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

A Riemannian smoothing steepest descent method for non-Lipschitz optimization on submanifolds (2104.04199v1)

Published 9 Apr 2021 in math.OC, cs.IT, cs.LG, eess.SP, and math.IT

Abstract: In this paper, we propose a Riemannian smoothing steepest descent method to minimize a nonconvex and non-Lipschitz function on submanifolds. The generalized subdifferentials on Riemannian manifold and the Riemannian gradient sub-consistency are defined and discussed. We prove that any accumulation point of the sequence generated by the Riemannian smoothing steepest descent method is a stationary point associated with the smoothing function employed in the method, which is necessary for the local optimality of the original non-Lipschitz problem. Under the Riemannian gradient sub-consistency condition, we also prove that any accumulation point is a Riemannian limiting stationary point of the original non-Lipschitz problem. Numerical experiments are conducted to demonstrate the efficiency of the proposed method.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.