Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Exact Stochastic Second Order Deep Learning (2104.03804v1)

Published 8 Apr 2021 in cs.LG and stat.ML

Abstract: Optimization in Deep Learning is mainly dominated by first-order methods which are built around the central concept of backpropagation. Second-order optimization methods, which take into account the second-order derivatives are far less used despite superior theoretical properties. This inadequacy of second-order methods stems from its exorbitant computational cost, poor performance, and the ineluctable non-convex nature of Deep Learning. Several attempts were made to resolve the inadequacy of second-order optimization without reaching a cost-effective solution, much less an exact solution. In this work, we show that this long-standing problem in Deep Learning could be solved in the stochastic case, given a suitable regularization of the neural network. Interestingly, we provide an expression of the stochastic Hessian and its exact eigenvalues. We provide a closed-form formula for the exact stochastic second-order Newton direction, we solve the non-convexity issue and adjust our exact solution to favor flat minima through regularization and spectral adjustment. We test our exact stochastic second-order method on popular datasets and reveal its adequacy for Deep Learning.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.