Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Centrality-Weighted Opinion Dynamics: Disagreement and Social Network Partition (2104.03485v1)

Published 8 Apr 2021 in cs.SI, cs.SY, and eess.SY

Abstract: This paper proposes a network model of opinion dynamics based on both the social network structure and network centralities. The conceptual novelty in this model is that the opinion of each individual is weighted by the associated network centrality in characterizing the opinion spread on social networks. Following a degree-centrality-weighted opinion dynamics model, we provide an algorithm to partition nodes of any graph into two and multiple clusters based on opinion disagreements. Furthermore, the partition algorithm is applied to real-world social networks including the Zachary karate club network [1] and the southern woman network [2] and these application examples indirectly verify the effectiveness of the degree-centrality-weighted opinion dynamics model. Finally, properties of general centrality-weighted opinion dynamics model are established.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)