Papers
Topics
Authors
Recent
Search
2000 character limit reached

Gi and Pal Scores: Deep Neural Network Generalization Statistics

Published 8 Apr 2021 in cs.LG | (2104.03469v2)

Abstract: The field of Deep Learning is rich with empirical evidence of human-like performance on a variety of regression, classification, and control tasks. However, despite these successes, the field lacks strong theoretical error bounds and consistent measures of network generalization and learned invariances. In this work, we introduce two new measures, the Gi-score and Pal-score, that capture a deep neural network's generalization capabilities. Inspired by the Gini coefficient and Palma ratio, measures of income inequality, our statistics are robust measures of a network's invariance to perturbations that accurately predict generalization gaps, i.e., the difference between accuracy on training and test sets.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.