Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 77 tok/s
Gemini 3.0 Pro 40 tok/s
Gemini 2.5 Flash 140 tok/s Pro
Kimi K2 190 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Convolutional Neural Network Pruning with Structural Redundancy Reduction (2104.03438v1)

Published 8 Apr 2021 in cs.CV and cs.LG

Abstract: Convolutional neural network (CNN) pruning has become one of the most successful network compression approaches in recent years. Existing works on network pruning usually focus on removing the least important filters in the network to achieve compact architectures. In this study, we claim that identifying structural redundancy plays a more essential role than finding unimportant filters, theoretically and empirically. We first statistically model the network pruning problem in a redundancy reduction perspective and find that pruning in the layer(s) with the most structural redundancy outperforms pruning the least important filters across all layers. Based on this finding, we then propose a network pruning approach that identifies structural redundancy of a CNN and prunes filters in the selected layer(s) with the most redundancy. Experiments on various benchmark network architectures and datasets show that our proposed approach significantly outperforms the previous state-of-the-art.

Citations (141)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.