Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Minimax Estimation of Linear Functions of Eigenvectors in the Face of Small Eigen-Gaps (2104.03298v2)

Published 7 Apr 2021 in math.ST, cs.IT, cs.LG, math.IT, stat.ML, and stat.TH

Abstract: Eigenvector perturbation analysis plays a vital role in various data science applications. A large body of prior works, however, focused on establishing $\ell_{2}$ eigenvector perturbation bounds, which are often highly inadequate in addressing tasks that rely on fine-grained behavior of an eigenvector. This paper makes progress on this by studying the perturbation of linear functions of an unknown eigenvector. Focusing on two fundamental problems -- matrix denoising and principal component analysis -- in the presence of Gaussian noise, we develop a suite of statistical theory that characterizes the perturbation of arbitrary linear functions of an unknown eigenvector. In order to mitigate a non-negligible bias issue inherent to the natural ``plug-in'' estimator, we develop de-biased estimators that (1) achieve minimax lower bounds for a family of scenarios (modulo some logarithmic factor), and (2) can be computed in a data-driven manner without sample splitting. Noteworthily, the proposed estimators are nearly minimax optimal even when the associated eigen-gap is {\em substantially smaller} than what is required in prior statistical theory.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.